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Abstract. The BRST cohomologies of non-critical massive string models are analysed in detail
in the range of dimensions 1 < d < 26. The classical theorems on vanishing of Dolbeaut type and
relative cohomologies are proved. The no-ghost theorem is proved in the same range of dimensions.
It is also shown that the BRST complex of the massive string model is a resolution of the non-critical
Nambu–Goto string in all spacetime dimensions 1 < d < 25.

Introduction

This paper is devoted to a detailed study of the quantum BRST cohomologies of the non-
critical string model formulated in [1]. The model has many promising features. It provides
a consistent relativistic quantum theory of a one-dimensional extended object in subcritical
dimensions 2 � d � 25. It was shown [1, 2] within the framework of the ‘old covariant’
quantization scheme that it is equivalent to a non-critical Nambu–Goto string [3] with
longitudinal degrees of freedom [4] but admits a much more tractable (gauge-equivalent)
dual picture in the Fock space generated by transverse and Liouville degrees of freedom. It
was also demonstrated [2] that the model can be locally described within the framework of
a quantum lightcone gauge [3] which, in turn, allowed for an effective analysis of its spin
content. The mass and spin spectra, although unacceptable for fundamental string theory,
are quite interesting from the point of view of the original motivations which introduced the
quantum relativistic string into physics [5]. The absence of massless excited states in their
spectra (d = 25 is the unique exception) indicates that it is not hopeless to expect that they
may give a proper description of the states of low-energy QCD. The main problem which must
be solved is a consistent theory of their interactions.

There is a very attractive idea of joining–splitting interactions [6] which cannot be pursued,
however, at least in its pure form, in the case of massive strings. The Mandelstam interaction
vertex, taken in its raw form, is simply not relativistic invariant in subcritical dimensions. What
is even more important is that the microcausal structure of lightcone graphs does not agree
with what is known about the classical motions of massive strings. It was shown in [1] that
the worldsheets of non-critical strings are generically not timelike and that the microcausality
condition imposed on the classical solutions reduces the system to a Nambu–Goto string model.

It seems that in order to construct the interactions of massive strings, a better understanding
of their quantum geometry is an inevitable condition.

The main motivation of the author to investigate the BRST cohomologies of non-critical
strings was to make a small step towards a consistent theory of their interactions. Although
quantum interactions of critical string theory were originally constructed within the framework
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of the so-called ‘old covariant’ formalism of dual theory [5] and the lightcone formulation of
Mandelstam [6], the role of the BRST formulation in the subsequent development of the theory
is by all means of primary importance [7].

The problem of the BRST description of non-critical strings was first raised in [8]. It was
shown there that there exists a quantum complex corresponding to the non-critical Polyakov
string in the canonical formulation [9]. Almost ten years later the statement on vanishing of
BRST cohomologies of the complex constructed in [8] was implicitly ‘spelled out’ [10] on the
ground of the results obtained and the methods used in [11].

It is shown in this paper that the BRST complex constructed for the non-critical string
model of [1] is a resolution [12, 13] of the non-critical Nambu–Goto string theory. The method
of obtaining this result is a bit different from that commonly used in the literature [11, 14].
As an intermediate step towards computation of the cohomology spaces bigraded complexes
analogous to those of Dolbeaut complexes of complex geometry [12, 13] are introduced and an
analogue of the Dolbeaut–Grotendieck lemma is proved. The vanishing theorem for relative
cohomologies is then obtained as a direct conclusion. A proof of the no-ghost theorem based on
a comparison of the Euler–Poincaré characteristic of the complex with its signature [15, 16] is
given. It is also shown that the gauge equivalence in the sense of the ‘old covariant’ formalism†
translates directly into the BRST cohomological equivalence in the bigraded complex.

The classical model of non-critical string is defined by the functional [1]:

S[M,g, ϕ, x] = − α

2π

∫
M

√−g d2z gab∂ax
µ∂bxµ − β

2π

∫
M

√−g d2z
(
gab∂aϕ∂bϕ + 2Rgϕ

)
(1)

which is an extension of the standard d-dimensional string worldsheet action by the Liouville
action for an additional scalar field. The detailed analysis [1] of the variational problem for (1)
leads, in the conformal gauge, to the constrained phase space system which is most conveniently
parametrized by real canonical pairs (xµ, pµ);µ = 0, . . . , d − 1 to describe centre-of-mass
motions and complex variables aµ

m, um; m ∈ Z \ {0} constructed out of higher Fourier modes
of the real maps xµ and ϕ and their canonically conjugated momenta. The zero modes of the
Liouville field are eliminated by the superselection rule imposed by the consistency condition
[1] of the variational problem for (1).

The Poisson brackets of the canonical variables read as

{pµ, x
ν} = ηµν {aµ

m, a
ν
n} = imηµνδm+m {um, un} = imδm+m. (2)

The classical constrains

Lm = 1
2

∑
n∈Z

a−nam+n + 1
2

∑
n∈Z

u−num+n + 2
√
β imum (3)

are of mixed type

{Lm,Ln} = i(m − n)Lm+n − 4iβm3δm+n (4)

where L0 is a unique one of first class.
The classical string model is thus a canonical system with constraints of mixed type. For

this reason the application of the standard cohomological quantization method in this case is
not so well geometrically justified as for first-class constrained systems. Nevertheless, the
quantum model of a non-critical string admits, as will be shown, a consistent description in
terms of the cohomology classes of the standard BRST complex.

† The states are defined as the classes modulo null vectors.
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1. The quantum string model and BRST complexes

The first quantization of the classical model is performed by constructing an irreducible
representation space for the Poisson algebra of canonical variables (2). This space is defined
as a direct integral:

H =
∫

ddp H(p) (5)

of pseudo-unitary Fock modules. Every H(p) is generated by the algebra of string excitation
operators:

[aµ
m, a

ν
n] = mηµνδm+n

[um, un] = mδm+n m, n ∈ Z µ, ν = 0, . . . , d − 1
(6)

out of the vacuum vector ω(p) satisfying a
µ
mω(p) = 0 = umω(p);m > 0. The vacuum

vectors are distributional eigenfunctions for the momentum operators: Pµω(p) = pµω(p)

and are formally normalized by the condition
(
ω(p), ω(p′)) = δ(p − p′).

The properties above together with formal conjugation rules a
µ∗
m = a

µ
−m, u∗

m = u−m

determine the unique scalar product in (5).
The operators corresponding to the classical constrains (3) are given by the standard

normally ordered expressions:

Lm =
∑
k∈Z

: am+ka−k : +
∑
k∈Z

: um+ku−k : + 2i
√
βmum + 2βδm0 m ∈ Z. (7)

The central term in their structural relations:

[Lm,Ln] = (m − n)Lm+n + 1
12m

(
m2 − 1

)
(d + 1 + 48β) δm+n (8)

is modified with respect to that of (4) by the normal ordering anomaly.
It is important for further constructions that the spaces H(p) of (5) are decomposable

into a direct sum of finite-dimensional eigensubspaces of the string level operator Rstr =
L0 − (1/2α)p2 − 2β:

H(p) =
⊕
Nstr�0

HNstr (p). (9)

Recall that within the framework of the ‘old covariant’ quantization method the physical
subspace of (5) is defined as an invariant subspace

Hphys = {#; (Lm − aδm0)# = 0} (10)

with respect to the maximal isotropic subalgebra of (8). A free real parameter a defines
the beginning of the string mass spectrum and is left to be fixed by natural consistency
conditions: the unitarity which is necessary for quantum mechanical interpretation and
relativistic invariance. The unitarity condition means that the inner product in the space above
should be non-negative. Then the quotient of (10) by the subspace of null vectors gives (after
completion) the Hilbert space of states.

Within the framework of the BRST formalism the construction above is replaced by (and
should, in fact, be equivalent to) a cohomological description of physical degrees of freedom
of the constrained quantum system. In mathematical language, the BRST complex should be
a resolution [12, 13] of the space of physical states.
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The ghost sector C∞† of the string BRST complex is generated by the family of ghost
{cm}m∈Z and antighost {bm}m∈Z modes with the usual anti commutation relations

{bm, cn} = δm+n {bm, bn} = 0 {cm, cn} = 0. (11)

The vacuum of the ghost space is defined as the unique vector ω satisfying

cmω = 0 m > 0 and bmω = 0 m � 0. (12)

The non-degenerate scalar product in C∞ is fixed by the normalization condition (ω, c0ω) = 1
of the ghost vacuum, the commutation relations (11) and formal conjugation properties
b∗
m = b−m, c

∗
m = c−m imposed on ghost modes.

The representation of the constraint algebra in C∞ is realized by the operators constructed in
such a way that under the commutator the anti-ghost modes {bm} are in an adjoint representation
of the Virasoro algebra, while the ghosts {c−m} are in a coadjoint one. This natural principle‡
is supplemented by the rule that the operators act on the vacuum vector which amounts to the
normal ordering prescription for the ghost modes:

:cmbk: =




cmbk m < 0

−bkcm m > 0
1
2 (c0b0 − b0c0) m = k = 0

and results in Lm = ∑
k∈Z

(k − m) : c−kbm+k: with

[Lm,Ln] = (m − n)Lm+n − δm+n(
26
12 (m

3 − m) + 2m). (13)

The differential in C∞ is defined to be

d∞ = 1
2

∑
m>0

c−mLm + 1
2c0L0 + 1

2

∑
m>0

L−mcm. (14)

Because of the anomaly in (13) it neither commutes with Virasoro operators (L0 being the
unique exception) nor it is nilpotent:

d2
∞ = −

∑
m>0

(
2m + 26

12m(m2 − 1)
)
c−mcm. (15)

The ghost level operator L0 = ∑
m : c−mbm : is diagonalizable in C∞ and its commutator

with a differential does vanish. Therefore, the space C∞ can be decomposed into a direct sum
of finite-dimensional and d∞ invariant subspaces of fixed ghost level

C∞ =
⊕
N�0

CN
∞. (16)

The whole space C∞ as well as every subspace of fixed level is graded by half-integral
eigenvalues of the ghost number operator:

G =
∑
m∈Z

: c−mbm: =: G0 + 1
2 (c0b0 − b0c0). (17)

The ghost number operator G0 = ∑
m>0(b−mcm − c−mbm) with an integral spectrum is

introduced here for later convenience in dealing with the so-called relative complex.

† This notation is used in order to stress the isomorphism of the ghost sector with the space of semi-infinite forms of
[17]. The vacuum of the ghost sector is then identified with the (semi-)infinite wedge product ω ∼ c1c2 . . . .

‡ This is the method of construction of an equivariant complex for any Lie group [18].
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The ghost numbers r admissible at levelN are bounded by the conditionN � 1
2 (r

2− 1
4 ) and

the scalar product in C∞ which pairs the spaces of opposite ghost numbers is non-degenerate
on the subspaces (16) of level decomposition.

The total space of the string BRST complex is constructed as an appropriate tensor product
of the covariant string space H (5) and the ghost sector C∞. It is defined as a direct sum of
subspaces of fixed total level:

C =
⊕
N�0

∫
ddp CN(p) where CN(p) =

⊕
Nstr+Ngh=N

HNstr (p) ⊗ CNgh
∞ . (18)

The differential in this complex is defined by the standard [18] formulae:

D =
∑
m∈Z

(Lm − δm0a) ⊗ c−m + 1 ⊗ d∞. (19)

It is not nilpotent:

D2 = 1
12

∑
m>0

c−mcm
(
m(m2 − 1)(d + 1 + 48β − 26) − 24m(1 − a)

)
(20)

unless the central terms of (8) and of (13) cancel each other, i.e. the free parameters of the
model take their critical values [8]:

β = 25 − d

48
and a = 1. (21)

The differential D commutes with momentum operators Pµ as well as with the total level
operator Rtot = L0 + L0 − 1

2P
2 − 2β. The complex (18) then splits into a sum/integral of

subcomplexes supported by the subspaces CN(p).
The cohomology space of the total complex (18) may be formally reconstructed as a direct

sum and direct integral out of cohomology spaces

Hr(p) := Zr(p)

Br(p)
Zr(p) := kerD|Cr (p) Br(p) = Im D|Cr−1(p) (22)

of the corresponding subcomplexes.
The label for the level number was suppressed in order to keep the amount of baroque style

in the notation bounded at some reasonable level. It will always be assumed, however, that
the spaces under consideration are of finite dimension. The convention to denote the spaces
of cocycles by the root letter Z and those of coboundaries by the root letter B will be kept
throughout this paper.

There is one more operator which commutes with D and can be diagonalized, namely
Ltot

0 = L0 +L0 − 1 = {b0,D}. The elements from the kernel of Ltot
0 are supported on the mass

shells SN :

p2 = −m2
N with m2

N = 2α

(
N str + Ngh − d − 1

24

)
(23)

and are not normalizable with respect to the measure under the direct integral.
Since the kinetic operator Ltot

0 is exact, the cohomology classes are, in fact, determined
by the cochains in its kernel: if D# = 0 and Ltot

0 # = κ#; κ �= 0 then # = D(1/κ)b0#.
For this reason, as far as only free theory is taken into account, it is possible to restrict the
considerations to the on-mass-shell complex

C0 =
⊕
N�0

∫
SN

dµN(p) CN(p) (24)
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with momenta satisfying (23). The direct integrals over mass shells SN are taken with respect
to the unique Lorenz invariant measures dµN(p).

It is worth stressing that all excited states are massive for spacetime dimension less than
25. In the case of d = 25 the situation is similar to that of the critical string model: the
first excited level is massless and perfect vacuum states p = 0 without string excitations are
admissible on-shell. These states, as will be seen later, are responsible for non-vanishing of
higher cohomology classes.

Since the complex is restricted to on-mass-shell cochains and the ghost c0 corresponding
to the kinetic operator Ltot

0 does not contribute to the mass spectrum it is natural to introduce
a relative complex:

Crel(p) := {# ∈ C0(p); b0# = 0} C0(p) = Crel(p) ⊕ c0Crel(p) (25)

with the differential Drel given by the formulae:

D = Drel + Ltot
0 c0 + Mb0 M = −2

∑
m>0

mc−mcm = {D, c0}. (26)

The relative differential is nilpotent on mass shell: D2
rel = −MLtot

0 . The ghost zero mode c0 is
absent in Crel and it is convenient to assume that this complex is graded by integral eigenvalues
of shifted ghost number operator G0 introduced in (17).

The relation between relative cohomology spaces

Hr
rel(p) = Zr

rel(p)

Br
rel(p)

(27)

and those of absolute cohomology (22) is not straightforward in the general case. The
problem of reconstruction of absolute cohomologies out of (27) will be solved after the relative
cohomology classes are identified.

Note that the original scalar product induced on C(p) by (6), (11), (12) is zero when
restricted to the relative complex. The non-degenerate pairing in Crel(p) is thus defined by

(#,# ′)rel := (#, c0#
′) #,# ′ ∈ Crel(p). (28)

There are still two more complexes which are tightly related to string theory and were used
in the formulation of a critical gauge field theory of strings [19]. Their importance was also
indicated in [17] in a slightly wider context. If one agrees to interpret the BRST complex and
its relative subcomplex as the counterparts of equivariant de Rham complexes [18] then the
two correspond to a Dolbeaut complex of complex geometry and its Hermitian dual [13].

The decomposition of [19] of the differential Drel corresponds, in fact, to the almost
complex structure on the quotient space Vir/CL0 underlying the relative complex†. The
extension of the complex structure to the space Crel is given by the operator

J = exp

(
−i 1

2π

(∑
m>0

c−mbm +
∑
m>0

b−mcm

))
. (29)

The decomposition of the ghost and anti-ghost spaces into eigenspaces of (29) induces a
bigrading of the space (25) of relative cochains. The bihomogeneous components Ca

b (p)

containing the elements of bidegree (a, b) are spanned by the vectors of the form

#a
b (p) = υ ⊗ c−j1 . . . c−ja b−i1 . . . b−ibω υ ∈ H(p). (30)

† It is natural complex structure on Diff (S1)/S1 [20] described by the operator J (
∑

m �=0 x
mlm) =

i
∑

m �=0 sign(m) xmlm at the tangent space at unity.
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The almost complex structure (29) is integrable (also in the analytic sense as demonstrated
in [20]) and this property amounts to the following decomposition of the relative differential
Drel = D + D :

D =
∑
m>0

L−m ⊗ cm +
∑
m>0

cmτ−m + ∂ D =
∑
m>0

Lm ⊗ c−m +
∑
m>0

c−mτm + ∂. (31)

The operators D and D are mutually anti-adjoint, D∗ = −D, with respect to the scalar product
(28) in the relative complex. As suggested by the notation above, the operators ∂ and ∂ denote
the canonical differentials of Vir∓ subalgebras of Vir:

∂ = − 1
2

∑
m,k>0

(m − k)b−k−mckcm and ∂ = − 1
2

∑
m,k>0

(m − k)c−mc−kbk+m

while the operators

τm =
∑
k>m

(m + k)bm−kck and τ−m =
∑
k>m

(m + k)c−kbk−m m > 0

realize the adjoint cross actions of respective subalgebras on themselves and define the induced
representations of Vir∓ on the corresponding ghost subspaces.

The conditional on-shell nilpotency D2
rel = −MLtot

0 is equivalent to

D2 = 0 D2 = 0 and DD + DD = −MLtot
0 (= 0 on-shell).

The complexes and cohomologies associated with the nilpotent operators D and D will be
defined in the next section.

2. Cohomologies of BRST complexes

This section is devoted to the computation of cohomology spaces associated with the original
string complex (18). First, and it seems the most important one, is the complex of Dolbeaut
type [13] and its dual. Both are supported by the same underlying space of cochains as that of
(25) but are endowed with differentials given by (1, 0) and (0,−1) components D and D ofDrel

(31). Since D (D) preserves the anti-ghost (ghost) number, the relative complex decomposes
into a direct sum of subcomplexes:

C(p) =
⊕
ab

Ca
b (p) D : Ca

b (p) → Ca+1
b (p) D : Ca

b (p) → Ca
b−1(p) (32)

with fixed anti-ghost (ghost) number. The corresponding cohomology spaces are bigraded:

Ha

b(p) = Za

b(p)

Ba

b(p)
Ha

b(p) = Za
b (p)

Ba
b (p)

. (33)

Note that the arrow for D is reversed (32) with respect to that of classical complex cohomology
theory [13]: D raises the ghost number, while D lowers the anti-ghost degree. This is a
reflection of the fact that the ghost sector stems from a semi-infinite vacuum form instead of a
0-form. The vacuum form when properly interpreted, is a section of a non-trivial holomorphic
square root of a canonical bundle [21]. This is, on the one hand, the source of non-vanishing
curvature (15) but, on the other hand, ensures that the mass spectrum is bounded from below
and makes the theory acceptable from a physical point of view.

Both D and D are nilpotent in an off-shell complex. Consequently, the cohomologies of
these operators remain intact independently of whether the mass-shell condition is satisfied or
not provided (as will be seen below) the momenta of the states are non-zero. This property
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indicates that bigraded complexes and bigraded cohomologies (33) may play a significant role
in the formulation of non-critical string field theory. They will be useful for computation and
identification of relative (27) and absolute (22) cohomologies too.

It will be shown first that there is an analogue of Poincaré–Serre duality for bigraded
cohomologies (33).

Lemma 2.1 (Poincaré–Serre duality). The spaces Ha

b(p), Hb
a(p) are mutually dual with

respect to

〈[#], [# ′]〉 := (#,# ′)rel # ∈ Za

b(p) # ′ ∈ Zb
a (p). (34)

Proof. Choosing the representing spaces Ra

b and Rb
a for cohomologies (33) it is possible to

write the direct sum decompositions:

Za

b = Ra

b ⊕ Ba

b Zb
a = Rb

a ⊕ Bb
a

where Ba

b,Ba
b denote the subspaces of exact cocycles.

The differentials D and D are mutually adjoint with respect to (28) and (Ba

b,Zb
a )rel = 0 =

(Bb
a,Z

a

b)rel. Hence the pairing 〈 , 〉 is well defined on cohomology classes.
It remains to show that it is non-degenerate. Choose any complementary spaces Z ′a

b , Z ′b
a

such that

Ca
b = Ra

b ⊕ Ba

b ⊕ Z ′a
b Cb

a = Rb
a ⊕ Bb

a ⊕ Z ′b
a.

Then D, D are injective on Z ′a
b and Z ′b

a , respectively. This together with the fact that ( , )rel

pairs Ca
b with Cb

a in a non-degenerate way implies, in turn, that the spaces Ba

b,Z ′b
a and Bb

a,Z
′a
b ,

respectively, are dual with respect to the scalar product. Hence the cohomology representing
spaces Ra

b and Rb
a must also be paired by ( , )rel in a non-degenerate way and are mutually

dual. �

A similar reasoning yields the Poincaré duality for relative cohomology spaces: Hr
rel �(

H−r
rel

)∗
with respect to (28) and an analogous result for absolute cohomologies.

The universal and effective tool to compute the cohomologies (33) is the technique of
spectral sequences [12, 24]. In the concrete context of this paper, however, the technology of
spectral sequences and filtered complexes is not needed in its full generality. It is possible to
adopt the general ideas of reasoning [12, 24] while keeping the considerations on elementary
level as in [11, 25].

Two ways of proceeding are possible here. A more abstract one [16, 23] based on the
vanishing theorem for Chevalley–Eilenberg homology [22] with values in a free module or
that of [11] exploiting the same technology of filtered complexes, but more explicitly related to
the kinematical situation under consideration. Since the first method is only seemingly more
general than the second—both are, in fact, equivalent in the context of string theory—the steps
of technical preparation to prove the Dolbeaut–Grotendieck vanishing lemma for (33) will
follow those of [11].

It will be shown that Dolbeaut (by a slight abuse of the classic terminology) cohomologies
(33) do vanish for positive ghost degrees (a, ∗); a > 0 at any momentum p �= 0.

Fix a non-zero momentum p. Then there exists an adapted lightcone basis† {k±, ei}d−2
i=1

of the momentum space such that p+ := k+p �= 0. The Virasoro operators of the string sector

† Consisting of two light like vectors k2± = 0, k+k− = −1 and an orthonormal basis {ei}d−2
i=1 of Euclidean transverse

space.
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(7) written in the lightcone basis adapted to the momentum p take the form

Lm = − 1√
α
p+a−

m + Ltr
m + LLi

m −
∑
n�=0

m+n�=0

a+
n+ma

−
−n − 1√

α
p−a+

m (35)

where Ltr
m and LLi

m denote the operators given by standard expressions (7) in transverse and
Liouville modes, respectively. Introduce a new gradation in the spaces (32) by assigning the
following filtration degrees† to the elementary modes:

deg(a−
m) = −1 deg(bm) = −1

deg(a+
m) = +1 deg(cm) = +1

deg(ai
m) = 0 deg(hm) = 0

m ∈ Z \ {0} 1 � i � d − 2.

(36)

The spaces Cb(p) of the bigraded complex (33) decompose into direct sums of filtration
homogeneous components: Cb(p) = ⊕

f Cb;f (p). According to this decomposition the

differential D decays into three parts:

D = D(0) + D(1) + D(2) D(i) : Ca
b;f (p) → Ca+1

b;f +i (p)

D(0) = −
∑
m>0

1√
α
p+a−

mc−m.
(37)

The operators D(1) and D(2) can be easily read off from (35) and (31) but their explicit form is
not needed. Out of (37) only the component D(0) of filtration degree zero will be in use. It is
nilpotent and defines the cohomology spaces Ha

b;f (p) localized at fixed filtration degree f .

Lemma 2.2.

Ha

b;f (p) = 0 a > 0 p �= 0.

Proof. The operator R = ∑
m>0(mc−mbm − a+

−ma
−
m) counting the level of c ghost and

a+ string excitations has filtration degree zero and is exact: R = {D(0),K} with K =
(
√
α/p+)

∑
m>0 a

+
−mbm. Consequently, all D(0) closed states not in the kernel of R (in particular

those with a > 0) are exact. �

Making use of this simple statement it is possible to prove the strict counterpart of the
Dolbeaut–Grotendieck lemma of classical complex geometry [13] on vanishing of bigraded
cohomologies (33).

Lemma 2.3 (Dolbeaut–Grotendieck).

Ha

b(p) = 0 = Hb
a(p) a > 0 p �= 0.

Proof. The result is immediate in the light of general theorems on cohomologies of filtered
complexes [18, 24] once it is realized that the filtration (36) is bounded: the filtration degree
of the cochains at level N ranges from −N to N . For the sake of completeness it is worth
repeating a very simple argument given in [11, 25], which is at the same time a good illustration
of how the general technology does work. This argument will also be used in the following.

† In the general scheme [12, 24] of ‘perturbative’ computation of cohomologies this new gradation defines a filtration
of the complex by decreasing the family of subcomplexes.
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Any cochain of bidegree (a, ∗) can be decomposed into a finite sum of homogeneous
components with respect to the filtration degree: #a

∗ = ∑
i�m #a

∗;i . The equation D#a
∗ = 0

written in terms of (37) implies a chain of equations for homogeneous constituents and, in
particular, D(0)#

a
∗;m = 0 for the component of lowest filtration degree. Since the cohomologies

of D(0) are trivial #a
∗;m = D(0)F

a−1
∗;m . The lowest filtration component of an equivalent element

# ′a
∗ = #a

∗ − DFa−1
∗;m is of degree at least m + 1. The procedure repeated appropriately many

times leads to the conclusion that #a
∗ = D6a−1

∗ for some 6a−1
∗ . The second equality follows

from the Poincaré–Serre duality of lemma 2.1. �
The Dolbeaut–Grotendieck lemma was proved here in a purely algebraic way. It seems to

be an interesting question as to whether the result can be obtained by more classical analytic
methods [13] with the help of the complex analytic structure of the underlying coset space
Diff (S1)/S1 constructed in [20].

The lemma above implies directly the vanishing theorem for relative cohomology (27)
and provides a convenient description of non-vanishing classes at ghost number zero in terms
of bigraded cocycles.

Theorem 2.1 (Vanishing theorem).

(1) Hr
rel(p) = 0 r �= 0 p on-shell

(2) H 0
rel(p) ∼ Z0

0(p)/DZ0
1(p).

Proof. (1) Take #r ∈ Zr
rel(p). In the case of r > 0, #r has the following bidegree

decomposition: #r = ∑m
0 6r+i

i . Taking into account the Dolbeaut–Grotendieck vanishing
lemma for Ha

b(p) and repeating the arguments used in its proof, with D(0) replaced by D and the
filtration degree replaced by the anti-ghost number i ,it is not difficult (the property D#a

0 ≡ 0
has to be used too) to obtain Hr

rel(p) = 0 for r > 0. The vanishing in the case of r < 0 can be
obtained in the same way with the use of vanishing of Ha

b(p); b > 0 cohomologies or simply
by Poincaré duality for relative cohomologies.

(2) Vanishing of Ha

b(p) and Hb
a(p) classes with a > 0 implies (by the same arguments

as above) Z0
rel(p) � #0 = ∑m

0 6i
i ∼ #0

0 with #0
0 ∈ Z0

0(p) and ∼ in the sense of relative

cohomology. Further identification of Z0
0(p) cocycles amounts to #0

0 − # ′0
0 = DF 0

1 with
DF 0

1 = 0. �
It is important to note that the statements above are local with respect to the momentum

variable as they were proved in the adapted lightcone frame. For the proofs to be pushed
through, the non-vanishing of the p+ momentum component was an inevitable assumption.
Note, however, that they can be globalized for massive states as the mass-shell equation
excludes p± components taking a value of zero in any lightcone frame. Consequently, the
definition of the space of physical states as a direct integral of local cohomology spaces does not
cause any problem at massive levels. The question of such a fusion in the cases of topologically
non-trivial tachyonic ground shells and the massless cone (first excited level for d = 25) is not
so straightforward and is left as an open problem.

It is also worth noting that the condition for #0
0 (p) = υ(p)⊗ω; υ ∈ H(p) to be a cocycle

reads 0 = D#0
0 (p) = ∑

m>0 Lmυ(p) ⊗ c−mω and consequently

Z0
0(p) = Hphys(p) ⊗ ω (38)

where Hphys(p) is the subspace of highest weight vectors (10) of the original covariant space
(5) of string states.
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Once the relative cohomology at non-zero momentum is known it is possible to reconstruct
absolute BRST cohomology spaces (22). It will be shown that the two natural injections
i∓ : C0

rel(p) → C∓ 1
2 (p) of relative complex into invariant (on-mass-shell) subspace (25) of full

BRST complex: i−(#) = # and i+(#) = c0# induce isomorphisms of the corresponding
cohomology spaces. Taken in their raw form they do not transform the relative cocycles into
absolute ones: Dc0# = −c0Drel# +M# (26). There is, however, a convenient representation
of relative cohomology classes given in theorem 2.1. In order to obtain proper mappings it is

enough to restrict the injections to Z0
0 cocycles all being annihilated by M . Then the induced

mappings

i∗± : Z0
0(p)/DZ0

1(p) → H±1/2(p) i∗+[#0
0 ] = [c0#

0
0 ]abs i∗−[#0

0 ] = [#0
0 ]abs (39)

are well defined on the equivalence classes. For i∗− it is obvious as i−D = Di− onZ0
1. In the case

of i+ the change of representative #0
0 → #0

0 +Dz0
1 induces i+(#0

0 ) → i+(#
0
0 )−D(c0z

0
1)+Mz0

1.
However, Mz0

1 is a D closed element of bidegree (1, 0). Consequently, it is Drel closed and
must be exact: Mz0

1 = DrelF
0 ≡ DF 0; F 0 ∈ C0

rel(p). Hence i∗+ is well defined too.
The complete description of absolute cohomologies of the BRST complex must include

on-shell states at p = 0. They are admissible (23) only for spacetime dimension d = 25 and
are all located at level N = 1. The space C(0)(0) of on-shell cochains is spanned by

C1/2(0) = c0V ⊕ Cc−1ω(0) C3/2(0) = Cc0c−1ω(0)

C−1/2(0) = V ⊕ Cc0b−1ω(0) C−3/2(0) = Cb−1ω(0)
(40)

where V = C{aµ

−1ω(0), u−1ω(0); 0 � µ � 24}.
The cohomology spaces (22) of the full BRST complex are described in the following.

Theorem 2.2 (Absolute BRST cohomology).

(1) H(p) = H−1/2(p) ⊕ H 1/2(p) H±1/2(p) = i∗±
(
Z0

0(p)/DZ0
1(p)

)
p �= 0

(2) H±1/2(0) ∼= i±V H±3/2(0) ∼= C±3/2(0) d = 25.

Proof.

(1) It will be shown first that vanishing of relative cohomology impliesHr(p) = 0 for r �= ± 1
2 .

For #r+ 1
2 = c06

r + 6r+1 the cocycle condition D#r+ 1
2 = 0 decays into two equations

Drel6
r = 0 and M6r + Drel6

r+1 = 0 on its relative components. If r �= 0 one has 6r =
DrelF

r−1 and M6r = MDrelF
r−1. Consequently, #r+ 1

2 ∼ #r+ 1
2 − D(c0F

r−1) = 6r+1.
If r �= −1 then #r+ 1

2 ∼ DrelF
r = DFr and the statement is evident.

In order to check the isomorphism property of i∗± one should use the closure conditions
above for #1/2 = c06

0 + 61 and #−1/2 = 60 + c06
−1 under the total differential D. They

amount to #−1/2 ∼ 60 and #1/2 = c06
0 − D−1

rel M60, where Drel6
0 = 0 and D−1

rel M60

denoting any solution of the equation M60 = DrelF
1. This equation can always be solved as

relative cohomologies are trivial at ghost number 2.
Theorem 2.1 guarantees that there exists F−1 such that 60 = z0

0 + DrelF
−1. Hence

#1/2 + D(c0F
−1) = c0z

0
0 and #−1/2 ∼ 60 + D(F−1) = z0

0 and both maps i∗± are onto.
Injectivity of i∗± is also a consequence of vanishing of relative cohomologies. Assume

i∗−[#]rel = i∗−[# ′]rel, i.e. # − # ′ = D6, 6 = c0F
−2 + F−1 which, in particular,

gives DrelF
−2 = 0. Hence F−2 = DrelF

−3 for some F−3 and cocycles are equivalent:
# − # ′ = Drel(F

−1 + MF−3). Injectivity of i∗+ can be proved in exactly the same way.
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(2) Direct calculation shows that all basis vectors of (40) except of c0b−1ω(0) are closed and,
moreover, c−1ω(0) = Dc0b−1ω(0). From (26) it is clear that closed elements containing
c0 are cohomologically non-trivial and so are their Poincaré duals. �

The result of theorem 2.1 on vanishing of relative cohomology enables one to find simple
formulae for dimensions of cohomology spaces H±1/2(p) or isomorphic space H 0

rel(p).
The method relies on the observation [15] that under favourable circumstances these

dimensions are equal to the Euler–Poincaré characteristic of the complex.
For the relative complex at fixed on-mass-shell momentum p and level N = −(1/2α)p2 +

(d − 1)/24

Crel(p) =
rN⊕

−rN

Cr
rel(p) rN = max {r; r(r + 1) � N}

its Euler–Poincaré characteristic ch(p) satisfies the chain of identities:

ch(p) :=
rN∑

−rN

(−1)r dim Cr
rel(p) =

rN∑
−rN

(−1)r dim Hr
rel(p) = dim H 0

rel(p). (41)

The second equality in the formulae above is nothing but an expression of the Euler–Poincaré
principle (which is a quite simple and very general algebraic statement [18, 25] provided the
complexes under consideration are of finite dimension), while the third one is a consequence
of the triviality of higher cohomologies. In this case the Euler–Poincaré characteristic counts
the number of linearly independent physical states on the corresponding mass shells.

These numbers can be encoded in the form of a generating function for the left-hand side
of (41):

chq = q(1/2α)p2−(d−1)/24P(q) such that ch(p) = chq |0 (42)

where |0 denotes the constant term of the Laurent series in q. The power series P(q) is
the product of a well known partition function corresponding to d + 1 families of bosonic
excitation operators P d+1

str (q) = ∏
n�0(1 − qn)−(d+1) and the alternating sum Palt(q) of the

partition functions of fixed ghost number subspaces Cr
∞. This function can be calculated as

the weighted trace of the operator T r(qL0(−1)G0) over the ghost sector C∞ as in [15, 16]. It
can also be obtained from the generating series in two variables

Pgh(q, t) =
∏
n>0

(1 + tqn)
∏
n>0

(1 + t−1qn) =
∑
N�0

qN

( rN∑
−rN

P r
N t

r

)
(43)

where the powers of q keep track of the level, while the coefficients of the powers of t count
the number of states at fixed level and of corresponding ghost number. Hence the alternating
sums are generated by Palt(q) = Pgh(q,−1) = ∏

n>0(1 − qn)2 and finally

dim H 0
rel(p) = q(1/2α)p2−(d−1)/24

∏
n�0

(1 − qn)−d+1
∣∣
0. (44)

The generating function above indicates that the states at levels N = −(1/2α)p2 + (d − 1)/24
are generated by d − 1 families of bosonic-type excitation operators.

The formulae in (44) will be useful for the proof of the no-ghost theorem in the next
section.
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3. No-ghost theorem and cohomology representations

The no-ghost theorem can be proved by at least two methods. A direct method can be applied
in the case where the subspace of cohomology representatives (gauge slice) is known explicitly.
Then the proof of the no-ghost theorem consists in checking that the scalar product induced
on this subspace is positive. A virtue of the second method [15] is that the only data it uses
are the vanishing of relative cohomology and the Lorenzian character of the scalar product
in the covariant space of string states (5). It also has an important advantage for the logic
of the reasoning here. It will be demonstrated that the positivity of the scalar product on
cohomologies allows for a straightforward identification of cohomologically trivial states in
(5) and for constructions of gauge slices.

The scalar product in the space of a relative complex induces a pairing in the space of
relative cohomology classes via their representatives:

〈[#(p)]rel, [# ′(p)]rel〉 := (
#(p), c0#

′(p)
)
. (45)

It is well defined, i.e. does not depend on the choice of representatives due to the fact that
Drel is self-adjoint with respect to ( , ). The Poincaré duality guarantees that the pairing is
non-degenerate. Since the physical states of the string are already identified with the relative
cohomology classes (theorem 2.1) the no-ghost theorem is equivalent to the statement that 〈 , 〉
of (45) is positive.

The proof of positivity relies on the observation that the no-ghost theorem is equivalent
to the statement that the Euler–Poincaré characteristic of the complex is equal to its signature,
provided the Euler–Poincaré principle applies to the last one.

The signature of the complex endowed with some Hermitian scalar product ( , ) is defined
as the difference between the number of positive eigenvalues and the number of negative
eigenvalues in its diagonal form. In the case of a relative string complex it is possible† to
prove:

sign H 0
rel(p) = sign C0

rel(p) = sign Crel(p). (46)

It is then clear that the scalar product (45) on cohomology spaces is positively defined if and
only if

Theorem 3.1 (No-ghost theorem).

dim H 0
rel = sign H 0

rel.

Proof. In order to prove the equality above it is most convenient to compare the generating
function (44) with that for signatures:

signq := q(1/2α)p2−(d−1)/24S(q) such that sign C0(p) = sign q

∣∣
0.

The key observation for the construction of the generating series S(q) is that the signatures are
multiplicative with respect to the tensor product. Hence S(q) is a product of Sstr(q) describing
the signatures of string excitation space and Sgh(q) corresponding to that of the ghost sector.

The signatures of the string sector are determined by the Lorenzian character of string
modes (6) with a timelike oscillator contributing −1 when appearing in an odd power. The
contributions of this timelike sector to the signatures are described by the function which counts

† A simple proof based on the Hodge–Serre construction of the positive scalar product and the harmonic representation
of cohomology classes may be found in [16] or [26].
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the difference between even and odd partitions of a level number and is given in terms of a
bosonic partition function of two variables,

Pstr(q, t) :=
∏
n>0

(1 − tqn)−1 =
∑
N�0

qN

( ∑
k>0

P k
N t

k

)

with t = −1. The final result is obtained by multiplying the above by the partition function of
the remaining d oscillators:

Sstr(q) =
∏
n>0

(1 − qn)−d(1 + qn)−1.

In order to compute Sgh(q) it is enough to note (the second equality in (46)) that only the
excitations of c−nb−n doublets of weight 2n contribute to the signature: +1 when the number
of doublets is even and −1 when it is odd. From the generating function for even fermionic
partitions analogous to (43) of the previous section:

Sgh(q) =
∏
n>0

(1 + tq2n)|t=−1 =
∏
n>0

(1 − q2n).

Hence the dimension and the signature generating functions are equal. �

The no-ghost theorem allows for a straightforward identification of the subspace DZ0
1(p)

of exact cocycles in Z0
0(p). The space Z0

0(p) was already identified (38) with the set of highest
weight vectors of (5). The characterization of exact elements is given in the following:

Lemma 3.1.

#0
0 (p) ∈ DZ0

1(p) if and only if (#0
0 (p), · )rel = 0.

Proof. The right pointed implication follows from (D · , ·)rel = −( · ,D · )rel.
Assume (#0

0 (p), · )rel = 0 and [#0
0 (p)]rel �= 0. Then 〈[#0

0 (p)]rel, H
0
rel〉 = 0 which

contradicts the no-ghost theorem. �

It follows from the lemma above that the set of exact cocycles coincides with the subspace
of null highest weight vectors of (10). This observation allows for simple constructions of the
representatives of cohomology classes.

The total space (10) as well as the total space Z0
0 is defined according to the decomposition

(24) of the on-mass-shell complex:

Z0
0 =

⊕
N�0

∫
SN

dµN(p)Z0
0(p). (47)

The discussion of the kinematics of the states from (47) splits naturally into two qualitatively
different cases: the tachyonic vacuum states (N = 0) and generically massive excited states.
Only in the case of d = 25 is the first excited level massless.

All vacuum states are parametrized by the momenta belonging to the mass shells defined
by p2 = 2α(d − 1)/24 which are of non-trivial topological type Sd−2.

The massive shells SN are most conveniently parametrized in terms of lightcone
coordinates associated with some fixed lightcone frame {k±, ei; i = 1 . . . d − 2}. The
disjoint components S±

N of SN are distinguished by the sign of never vanishing lightcone
coordinate p+ = kp ∈ R \ {0}. The momenta are then described by p+ and the set of
d − 2 transverse coordinates pi = eip. The complementary lightcone component p− = k−p
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becomes dependent and equals p− = (1/2p+)(p2 + m2
N) with mass squared given in (23) and

p denoting the transverse part of the momentum.
In the lightcone coordinates the measure restricted to the connected component S+

∗ of S∗
present in (47) acquires a particularly simple and level-independent form:

dµ(p) = dp+

p+
dd−2p. (48)

As in the standard lightcone constructions one may choose the lightcone coordinate x+ := k+x

as the evolution parameter and the mass-shell condition is then solved by fixing the lightcone
time dependence of the states from (47):

#(N)(p, p+, x+) = eix+(1/2p+)(p2+m2
N )#(N)(p, p+). (49)

The pairing of the states (49) has to be evaluated at an arbitrarily chosen but fixed moment of
time. It is also assumed that the scalar product of the vectors located at different momenta is
proportional to p+δ(p+ − p′+)δ(p − p′).

The description of the space Z0
0(p) � Hphys(p) can be given in terms of a so-called

spectrum-generating algebra of DDF operators [27] associated with a fixed lightcone frame
{k±, ei; i = 1 . . . d − 2}. Their construction is briefly reported in the appendix. The DDF
algebra is generated by the set of elementary excitation operators consisting of d − 2 families
of transverse modes (A1) {Ai

m}m∈Z; i = 1, . . . , d − 2, the family of Liouville modes (A3)
{Um}m∈Z and a set of Brower [4] operators (A2) {Bm}m∈Z to describe the excitations along
the k− lightcone direction. They are well defined on all states with non-vanishing lightcone
component p+ := k+p of the momentum and their commutation relation reads

[Ai
m,A

j
n] = mδn+nδ

ij [Um,Un] = mδn+m [Bm,Bn] = (m − n)Bm+n. (50)

The above operators are designed [4] to commute with all quantum constraints (7). Their
additional property of primary importance is that all have a definite weight with respect to the
covariant level operator Rstr of (9): [Rstr,Om] = −mOm. Since they commute with L0 they
must shift the energy of the state consistently: p → p +mα 1

p+ k
+. It was proved in [1] that the

state #(p) with on-mass-shell momentum p and at corresponding level N belongs to Hphys(p)

if and only if

#(p) = ϑN(A,B,U)ω

(
p + α

1

p+
Nk+

)
(51)

where ϑN( · ) denotes a polynomial in DDF creation operators of level N . From the property
of longitudinal zero mode B0ω(p) = 0 and the commutation relations (50) it follows that
the state (51) is null, i.e. cohomologically trivial, if and only if the corresponding polynomial

contains any longitudinal excitation operator B−m; m > 0. Hence the subspace of Z0
0(p):

HLC(p) := {#(p); B0#(p) = 0} (52)

is transverse to DZ0
1(p) and defines a good section of the space Z0

0(p) over the quotient

Z0
0(p)/DZ0

1(p). The space (52) does not contain longitudinally excited states and it is natural
to call it the lightcone gauge slice. In the lightcone parametrization (49) the condition (52)
acquires the form of the Schrödinger equation:

B0#(p+, p, x+) ≡
(

i
1

α
p+ ∂

∂x+
− L0(A,U)

)
#(p+, p, x+) = 0 (53)
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where L0(A,U) is the standard expression in transverse and Liouville DDF modes given in
(A5). According to (53) and (52) the time-dependent momentum eigenstates from HLC(p)

are generated by polynomials in transverse DDF operators acting on an appropriate tachyonic
vacuum:

HN
LC(p

+, p) � #(p+, p, x+) = ϑN(A(x+), U(x+))ω(p+, p, x+). (54)

The operators generating the states from HLC(p) and vacuum vectors exhibit a very simple
lightcone time (x+) dependence:

Ai
m(x

+) = eimα(x+/p+)ai
m Um(x

+) = eimα(x+/p+)um

ω(p+, p, x+) = e(ix
+/2p+)(p2+m2

0)ω(p+, p)

ai
m = Ai

m(0) um = Um(0) ω(p+, p) = ω(p+, p, 0).

(55)

The time evolution of the excitation operators above is an automorphism of their CCR algebra.
It is this crucial property that allows one to describe the time dependence in the factorized
form of (54) and, furthermore, to describe the model in terms of initial data for the quantum
mechanical Schrödinger equation (53) in the Fock space generated by the algebra of ai

m and
um. It is then natural to introduce the space Hlc which contains all vectors from HLC evaluated
at x+ = 0. The space Hlc can be thought of as an abstract Fock space independent of the
explicit realization of its generators in terms of DDF operators. Hence,

H 0
rel � Hlc � Hvac ⊕

⊕
N>0

∫
dp+

p+
dd−2p HN

lc (p)

where Hvac denotes the Hilbert space of tachyonic ground states which cannot be consistently
described within the framework of the lightcone gauge.

There is another interesting section of cohomology classes in the spacetime dimensions
d < 25. In all of these cases (in contrast to d = 25 as the corresponding Virasoro module is
not free) the Fock-type Liouville excitations of the states from (52) are equally well described
in terms of the vectors of Verma modules generated by

Ln(U) = 1
2

∑
m∈Z

: U−mUm+n : +2i
√
β Un + 2βδn0.

Consequently, the transformation

HLC(p) � ϑN(A,L(U))ω

(
p + α

1

p+
Nk+

)
�→ ϑN(A,BNG)ω

(
p + α

1

p+
Nk+

)
∈ HNG(p)

where BNG
m = Lm(U)+Bm, is a shift along null directions and defines an equivalent section of

cohomology classes. It is natural to call this section the Nambu–Goto gauge slice: the states
in HNG(p) do not contain Liouville excitations and are generated by the algebra of transverse
DDF modes and BNG

m operators satisfying

[BNG
m ,BNG

n ] = (m − n)BNG
n+m + 1

12m(m2 − 1)(26 − d)δm+n

which is exactly the longitudinal Virasoro algebra of the non-critical Nambu–Goto string [4].
The description of HNG(p) within the framework of lightcone parametrization of mass shells
is more difficult than in the case of (52) since all BNG

m are first-order differential operators with
respect to the lightcone time variable x+.
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Concluding remarks

There are at least two interesting problems which are left open.
It was shown in [1] that in addition to the string model, defined by the critical values (21)

of Liouville coupling and the intercept parameter, there are families of unitary models with
longitudinal degrees of freedom. They fall into a continuous series:

a � 1 0 < β � 24 − D

48
(56)

or a discrete one:

β = 24 − D

48
+

1

8m(m + 1)
m � 2

a = 1 − ((m + 1)r − ms)2 − 1

4m(m + 1)
1 � r � m − 1 1 � s � r.

(57)

It is an interesting question as to whether the string models of non-critical series do admit
the resolutions in terms of some complex of BRST type. It is tempting to conjecture that
an appropriate complex may be defined as the kernel of the curvature operator (20) D2. It
can be immediately noted that this subcomplex consists of cochains with non-negative ghost
number.

The second problem is the global description of the lightcone gauge slice. The Fock
space picture of the space of physical states is admissible over the open subsets of the ground
tachyonic shell defined as the injective images of massive shells under the shift mappings
introduced in (51). For obvious reasons this local description in terms of lightcone Fock space
is not relativistic invariant. The generators of the Lorentz group constructed in [2] on the
lightcone gauge slice are self-adjoint only on the subspaces of massive states with vacuum
vectors excluded. It is then important to understand the global geometry of the space of string
states which are only locally visible as Fock excitations.
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Appendix

In order to define the DDF operators one introduces the conformal fields

Xµ(z) = √
αxµ − i

1√
α
Pµ log(z) +

∑
m �=0

i

m
aµ
mz

−m ϕ(z) =
∑
m �=0

i

m
umz

−m

Pµ(z) = iz

(
d

dz
Xµ

)
(z) =

∑
m∈Z

aµ
mz

−m π(z) = iz

(
d

dz
ϕ

)
(z) =

∑
m∈Z

umz
−m

with standard commutation rules [28].
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The construction of DDF operators is performed in some fixed lightcone frame in the
momentum space {k±, ei}d−2

i=1 . The transverse DDF modes

Ai
m(k+) = 1

2π i

∮
dz

z
: eiP (z) exp

im
√
αX+(z)

p+
: i = 1, . . . , d − 2 (A1)

and the longitudinal ones

B̃−
m(k+) = 1

2π i

∮
dz

z
:

(
p+

√
α
P−(z) − m

2
z

d

dz
log

(√
αP +(z)

p+

))
exp

im
√
αX+(z)

p+
: . (A2)

are given by slightly modified expressions with respect to those of [4, 27]. The virtue of this
rather simple modification is that the domain of the operators under consideration is extended
to the open subset p+ �= 0 of the momentum space, while in the original constructions it was
restricted to some integral lattice.

The family of DDF operators corresponding to the original Liouville u modes is defined
by

Um(k+) = 1

2π i

∮
dz

z
:

(
π(z) − 2i

√
βz

d

dz
log

(√
αP +(z)

p+

))
exp

im
√
αX+(z)

p+
: (A3)

where β = (25 − d)/48. The operators (A1) and (A3) satisfy canonical commutation rules
of elementary modes, while the commutation relations of longitudinal modes (A2) are that of
Virasoro algebra with the central charge c = 24. They neither commute with transverse DDF
operators nor with Liouville ones.

For this reason it is convenient to introduce the shifted Brower modes:

Bn = B̃−
n − Ln(A,U) + δn0 (A4)

where

Ln(A,U) = 1
2

∑
m∈Z

: A−mAn+m : + 1
2

∑
m∈Z

: U−mUn+m : + 2i
√
βUn + 2βδn0. (A5)

The operators (A4) commute with (A1) and (A3) and their structural relations reads

[Bm,Bn] = (m − n)Bm+n.
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